

Group of Headed Studs in Tension Near an Edge as per ACI 318-11 Appendix D

System

Spacing between Bolts along x-x, B=	6.00 in
Spacing between Bolts along y-y, L=	6.00 in
Distance to Edge from Nearst bolt, e=	3.00 in

Load

Ultimate Load, P _u =	14000 lb
Number of Anchors, n=	4

Material Properties

Concrete Strength, f' _c =	4000 psi
Tensile Strenth of Anchor Bolt Grade, f _{uta} =	60000 psi
Strength Reduction Factor (According to Cl.D.4.4.a of ACl318), $\Phi_1\text{=}$	0.75
Strength Reduction Factor (According to Cl.D.4.4.c of ACI318), $\Phi_2\text{=}$	0.70
Modification Factor for Lightweight Concrete, λ=	1.00

Determine Anchor Diameter

Required Effective Area of Anchor Bolt (According to Eq.D.2 of ACI318),

A _{se_Req} =		$\frac{P_u}{\Phi_1 * n * f_{uta}}$	=	0.078 in ²
Provided Anchor Bolt, I	Dia=	SEL("ACI/Anchor"; Dia;)	=	0.500 in
Provided Area of Ancho	or Bolt, A _{se_Prov} =	TAB("ACI/Anchor"; Ase; Dia=Dia)	=	0.142 in ²
Check Validity=	IF(A _{se Prov} ≥A _{se}	, Reg; "Valid"; "Increase Dia")	=	Valid

Determine Embedment Length

Assume that,
$$h_{ef_Prov}$$
= 4.50 in Projected Area of Failure Surface for Anchors (According to Cl.D.5.2.1 of ACI318),
$$A_{nc}$$
= $(1.5*h_{ef_Prov} + L + e)*(1.5*2*h_{ef_Prov} + B)$ = 307 in²

Projected Area of Failure Surface for Single Anchor (According to Cl.D.5.2.1 of ACI318),

Group of Headed Anchors in Tension

Page: 2

$$A_{\text{nco}} = 9 * h_{\text{ef Prov}}^2 = 182 \text{ in}^2$$

Factor (According to Cl.D.5.2.4 of ACI318),
$$\psi_{ec.N}$$
= 1.00

Factor (According to CI.D.5.2.5 of ACI318),
$$\psi_{ed,N} = 0.7 + \frac{0.3 * e}{1.5 * h_{ef Prov}} = 0.83$$

Factor (According to CI.D.5.2.6 of ACI318),
$$\psi_{c,N}$$
= 1.00

Factor (According to CI.D.5.2.6 of ACI318),
$$\psi_{cp,N}$$
= 1.00

Basic Strength of Concrete Breakout (According to Eq.D-6 of ACI318),

$$N_b = 24*\lambda*\sqrt{fc}*h_{ef\ Prov}^{1.5} = 14490 \text{ lb}$$

Nominal Strength of Concrete Breakout (According to Eq.D-5 of ACI318),

$$N_{cbg} = \frac{A_{nc}}{A_{nco}} * \psi_{ec,N} * \psi_{ed,N} * \psi_{c,N} * \psi_{cp,N} * N_b$$
 = 20287 lb

Check Validition=
$$IF(P_u < \Phi_2^*N_{cbg}; "Valid"; "Increase h_{ef}")$$
 = Valid

Calculation of Regired Head Size

Factor (According to CI.D.5.3.6 of ACI318),
$$\psi_{c,P}$$
= 1.00

Required Head Size for Anchor Bolt (According to Eq.D-15 of ACI318),

$$A_{brg} = \frac{Pu/n}{\Phi_2 * \psi_{c,P} * 8 * f'c} = 0.156 in^2$$

Design Summary

Diameter of Anchor Bolt, Dia = Dia =
$$0.500$$
 in Embedment Length of Anchor Bolt, h_{ef} = $h_{ef\ Prov}$ = 4.50 in

Head Size of Anchor Bolt,
$$A_{brg} = A_{brg} = 0.156 \text{ in}^2$$