

Design of Beam Ledge as per ACI 318-11 Chapters 9 & 11

System

Width of Beam, b=			7.0 in
Height of Beam, h=			36.0 in
Width of Beam Ledge, b _L =			6.0 in
Height of Beam Ledge, h _L =			12.0 in
Concrete Cover, co=			1.25 in
Width of Bearing Pad, W=			4.5 in
Length of Bearing Pad, L=			4.5 in
Thickness of Bearing Pad, t_b =			0.3 in
Gap Spacing, a _s =			1.0 in
Shear Spacing, a _v =	2/3 * L + a _s	=	4.0 in
Flexural Spacing, a _f =	a _v + co	=	5.25 in
Effective Width According to Shear Requirements, b _{ws} =	W + 4 * a _v	=	20.5 in
Effective Width According to Flexural Requirements, b_{wf} =	W + 5 * a _f	=	30.8 in
Effective Depth of Beam Ledge, d _L =	h _L -co	=	10.75 in

Load

Dead Load, P _D =		11.0 kips
Live Load, P _L =		6.5 kips
Service Load, P=	$P_D + P_L$	= 17.5 kips
Ultimate Load, P _{II} =	1.2 * P _D + 1.6 * P _I	= 23.6 kips

Material Properties

Concrete Strength, f' _c =	5000 psi
Yield Strength of Reinforcement, f _y =	60000 psi
Shear Strength Reduction Factor (According to Cl.9.3.2 of ACI318). Φ =	0.75

Beam Ledge Design

ACI 318

Page: 2

Bearing Strength Reduction Factor (According to Cl.9.3.2 of ACI318), $\Phi_{\rm b}$ =	0.65
---	------

Modification Factor for Lightweight Concrete, λ = 1.00

Friction Factor (According to Cl.11.6.4.3 of ACI318), μ = 1.4* λ = 1.40

Maximum Service Load for Bearing Pads, q= 1000 psi

Check Bearing Plate Dimension

Capacity of Bearing Plate,
$$B_p = W * L * q /1000$$
 = 20.25 kips

Check Validity= $IF(B_n>P;"Valid";"Increase Dimension") = Valid$

Check Concrete Bearing Strength

Bearing Strength of Concrete,
$$\Phi P_{nb} = \Phi_b^* 0.85 * f_c^* L * W / 1000$$
 = 55.9 kips

Check Validity= $IF(\Phi P_{nb} > Pu; "Valid"; "Invalid")$ = Valid

Check Maximum Nominal Shear-Transfer by Effective Section

Nominal Shear by Effective Section (According to Cl.11.9.3.2.1 of ACI318),

$$V_{n1}$$
 = 0.2 * f'_{c} * b_{ws} * d_{L} /1000 = 220.4 kips

$$V_{n2}$$
 = (480 + 0.08 * f'_c) * b_{ws} * d_L /1000 = 193.9 kips

$$V_{n3}$$
= 1600 * b_{ws} * d_L /1000 = 352.6 kips

$$\Phi V_n = \Phi_s * MIN(V_{n1}; V_{n2}; V_{n3}) = 145.4 \text{ kips}$$

Check Validity= $IF(\Phi V_n > P_u; "Valid"; "Increase Dimension") = Valid$

Determine Shear Friction Reinforcement (A_{vf})

Required Reinforcement for Shear Friction (According to Cl.11.6.4.1 of ACI318),

$$A_{vf}$$
 = $P_{\mu} * 1000 / (\Phi_{s} * f_{v} * \mu)$ = 0.37 in² per bws

Determine Direct Tension Reinforcement (An)

Required Reinforcement for Direct Tension (According to Cl.11.8.3.4 of ACI318),

$$A_n = \frac{0.2 * P_{II} * 1000 / (\Phi_S * f_V)}{0.10 in^2 per bwf}$$

Determine Flexural Reinforcement (A_f)

$$M_{II} = P_{II} * a_f + 0.2 * P_{II} * (h_I - d_I) = 129.8 \text{ kip*in}$$

Required Reinforcement for Flexural (According to Cl.11.8.3.3 of ACI318),

$$A_f = M_{II} * 1000 / (\Phi_S * f_V * 0.8 * d_I) = 0.34 in^2 per bwf$$

Determine Primary Tension Reinforcement (Asc)

Required Area of Reinforcement for Primary Tension (According to Cl.11.8.3.5 of ACI318),

$$A_{sc}$$
 = MAX (2/3 * $A_{vf}/b_{ws} + A_{n}/b_{wf}$; $A_{f}/b_{wf} + A_{n}/b_{wf}$) = 0.015 in² per in

Minimum Area of Reinforcement for Primary Tension (According to Cl.11.8.5 of ACI318),

$$A_{sc\ min}$$
 = 0.036 in² per in

$$A_{sc reg}$$
 = MAX $(A_{sc}; A_{sc min})$ = 0.036 in² per in

Beam Ledge Design

ACI 318

Page: 3

Provided Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.5
Spacing between Bars, s=			8.0 in
Provided Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	0.31 in ²
Check Validity=	IF(A _{sb} /A _{sc_req} >s; "Valid"; "Invalid")	=	Valid

Determine Horizontal Reinforcement (A_h)

Required Area of Reinforcement for Horizontal Shear (According to Cl.11.8.4 of ACI318),

 $A_h = 0.5*(A_{sc_req} - A_n/b_{wf}) = 0.016 \text{ in}^2 \text{ per in}$ Provided Reinforcement, Bar= SEL("ACI/Bar"; Bar;) = No.4 Provided Reinforcement, A_{sb} = TAB("ACI/Bar"; Asb; Bar=Bar) = 0.20 in² Check Validity= IF($A_{sb}/A_h > s$; "Valid"; "Invalid") = Valid

Design Summary

Primary Tension Reinforcement, $A_{sc_req} = A_{sc_req}$ = 0.036 in² per in

Horizontal Shear Reinforcement, $A_h = A_h = 0.016 \text{ in}^2 \text{ per in}$

Distribute in two-thirds of Effective Ledge Depth adjacent to ${\rm A}_{\rm sc}$