

<u>Design for Transfer of Horizontal Force at Base of Column where The Footing Surface is not Intentionally</u> Roughened as per ACI 318-11 Chapter 12

System

Column Width, b _c =	12.0 in
Column Depth, d _c =	12.0 in
Footing Width, B _f =	9.0 ft
Footing Length, L _f =	9.0 ft
Footing Thickness, T _f =	22.0 in

Load

Ultimate Horizontal Force at the Base of Column, V _{II} =	= 84.0 kips
--	-------------

Material Properties

Concrete Strength, f' _c =		4000 psi
Yield Strength of Reinforcement, f _y =		60000 psi
Shear Strength Reduction Factor (According to Cl.9.3.2 of ACI318), Φ =		0.75
Modification Factor for Lightweight Concrete, λ =		1.00
Friction Factor (According to Cl.11.6.4.3 of ACI318), μ = 0.6* λ	=	0.60

Check on Maximum Shear Transfer Permitted

Nominal Shear Force (According to Cl.11.6.5 of ACI318),

$\Phi V_{n1} =$	$\Phi^*(0.2*f_c/1000*b_c*d_c)$	=	86.4 kips		
$\Phi V_{n2} =$	$\Phi^*(800^*b_c^*d_c)/1000$	=	86.4 kips		
Minimum Nominal Shear, ΦV_n =	$MIN(\PhiV_{n1};\PhiV_{n2};)$	=	86.4 kips		
Check Validity=	IF(Vu<ΦV _n ; "Valid"; "Increase Dimension")	=	Valid		
Required Area of Reinforcement (According to Eq.11-25 of ACI318),					
	Vu*1000		•		

$$A_{\text{vf}} = \frac{\text{vu}^*1000}{\Phi^* \text{fy}^* \mu} = 3.11 \text{ in}^2$$

C

Transfer of Horizontal Force at Base of Column

ACI 318

Page: 2

Provided Shear Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)	= No.8
Diameter of Bars, Dia=	TAB("ACI/Bar"; Dia; Bar=Bar)	= 1.0000 in
Number of Bars n=		4

Provided Area of Reinforcement,
$$A_s = n^* \frac{\pi^* Dia^2}{4}$$
 = 3.14 in²

Check Validity=
$$IF(A_s>A_{vf}; "Valid"; "Increase RFT")$$
 = Valid

Check on Development Length of Tensile Reinforcement with Column

Clear Cover to Center of Bars, c= 3.25 in Center to Center Bar Spacing, S= 4.50 in Factor of, cb= MIN(c+Dia/2; S/2) = 2.25 in (According to CI.12.2.3 of ACI318) Factor of, Ktr= 0.00 (According to CI.12.2.4 of ACI318) Factor of,
$$\Psi_t$$
= 1.00 (According to CI.12.2.4 of ACI318) Factor of, Ψ_e = 1.00 (According to CI.12.2.4 of ACI318) Factor of, Ψ_e = 1.00

Development Length within Column

Development Length (According to Eq.12-1 of ACI318),

$$L_{d1} = \frac{3}{40} * \frac{fy}{\lambda^* \sqrt{fc}} * \frac{\Psi_t * \Psi_e * \Psi_s}{(cb + Ktr)/Dia} * Dia = 31.6 in$$

Development Length within Footing

Development Length (According to Cl.12.5.2 of ACI318),

$$L_{d2} = \frac{0.02 * \Psi_e * fy}{\lambda^* \sqrt{f'c}} * Dia = 19.0 in$$

Design Summary

Provided Area of Reinforcement,
$$A_s$$
 = A_s = 3.14 in²
Development Length within Column, L_{d1} = L_{d1} = 31.6 in
Development Length within Footing, L_{d2} = L_{d2} = 19.0 in