

Design for Depth of Shallow Foundation as per ACI 318-11 Chapters 11 & 15

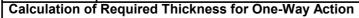
System

Width of Column, c ₁ =	30.0 in
Length of Column, c ₂ =	12.0 in
Concrete Cover, co=	5.0 in
Height of Soil above Footing, h _s =	5 ft

Load

Service Dead Load, P _D =			350 kips
Service Live Load, P _L =			275 kips
Ultimate Load, P _u =	1.2*P _D +1.6*P _L	=	860 kips
Service Surcharge, q=			0.1 ksf
Allowable Soil Pressure at Bottom	of Footing, P _a =		4.5 ksf
Average Weight of Soil and Concre	ete above Footing Base, w=	13	0.0 pcf

Material Properties


Concrete Strength, t' _c =	3000 psi
Shear Strength Reduction Factor (According to Cl.9.3.2 of ACI318), Φ =	0.75
Modification Factor for Lightweight Concrete, λ=	1.00

Calculation of Base Area

Net Allowable Soil Pressure, P _{na} =	$P_a - q - \frac{w^n_s}{1000}$	=	3.75 ksf
Required Area of Footing, A _f =	$\frac{P_D + P_L}{P_na}$	=	166.7 ft ²
Assume Width of Footing, B=			13 ft
Assume Length of Footing, L=			13 ft
Check Validity=	IF(A _f > L*B; "Invalid"; "Valid")	=	Valid
Ultimate Pressure, q _s =	P _u / (B * L)	=	5.09 ksf

Depth of Shallow Foundation

33 in

Assume that Thickness of Footing, t=

Depth of Footing, d= 28 in t-co

Critical Area of One-Way Shear, $A_{1B} = B * \left(\frac{L - c_2/12}{2} - \frac{d}{12}\right)$ $= 47.67 \text{ ft}^2$

Critical Area of One-Way Shear, $A_{1L} = L * \left(\frac{B - c_1/12}{2} - \frac{d}{12} \right)$ 37.92 ft²

Critical Area of One-Way Shear, $A_1 = MAX(A_{1B}; A_{1L})$ 47.67 ft²

Width of Critical Section for One-Way Shear, $b_w = IF(A_{1B} > A_{1I}; B; L)$ 13 ft

Ultimate Shear force at Critical Area Section, V₁₁₁= q_s * A₁ 243 kips

Nominal Concrete Shear Strength, $\Phi V_c = \Phi^* 2^* \lambda^* \sqrt{f'_c} * \frac{b_w * 12^* d}{1000}$ 359 kips

IF($\Phi V_c > V_{u1}$; "O.K."; "Increase Depth") Check Validation = O.K.

Calculation of Required Thickness for Two-Way Action

Critical Area of Two-Way Shear, $A_2 = B*L - \left(\frac{(c_1 + d)*(c_2 + d)}{144}\right)$ $= 152.89 \text{ ft}^2$

Ultimate Shear force at Critical Area Section, V₁₁₂= q_s * A₂ 778.2 kips

Perimeter of Critical Section for Two-Way Shear, $b_0 = 2*(c_1+d) + 2*(c_2+d)$ 196.0 in

Column Type= SEL("ACI/Alfa S";Type;) Interior

Alfa Constant, α_s = TAB("ACI/AlfaS"; Alfa; Type=Type) 40.00

Ratio of Long to Short Column Dimensions, $\beta = MAX(c_1;c_2)/MIN(c_1;c_2)$ 2.50

Concrete Shear Strength (According to Eq. 11-31 of ACI318),

 $\left(2 + \frac{4}{8}\right) * \lambda * \sqrt{f_c} * \frac{b_0 * d}{1000}$ V_{c1}= 1082 kips

Concrete Shear Strength (According to Eq. 11-32 of ACI318), $V_{c2} = \left(\alpha_s * \frac{d}{b_0} + 2\right) * \lambda * \sqrt{f'c} * \frac{b_0 * d}{1000}$ 2319 kips

Concrete Shear Strength (According to Eq. 11-33 of ACI318), $V_{c3} = 4*\lambda*\sqrt{f'_{c}}*\frac{b_0*d}{1000}$ 1202 kips

Nominal Concrete Shear Strength, $\Phi V_c = \Phi * MIN(V_{c1}; V_{c2}; V_{c3})$ 812 kips

IF($\Phi V_c > V_{u2}$; "O.K."; "Increase Depth") Check Validation = O.K.

Calculation Summary

Width of Footing, B= В 13 ft Length of Footing, L= L 13 ft

Thickness of Footing, t= 33 in