

Design of Simple Span Deep Beam by the Strut-and-Tie Model as per ACI318 Appendix A

System

Width of Deep Beam, b=			7.0 in
Height of Deep Beam, h=			60.0 in
Concrete Cover, co=			1.25 in
Depth of Deep Beam, d=	h-co	=	58.75 in
End Distance of Truss Model, x=			5.0 in
Span of Deep Beam, L _n =			13.3 ft
Column Width, b _c =			20.0 in

Load

Dead Load for Column, P _D =		173.35 kips
Live Load for Column, P _L =		270.0 kips
Service Load for Column, P=	1.0*P _D +1.0*P _L	= 443.4 kips
Ultimate Load for Column, P=	1.2*P _D + 1.6*P _L	= 640.0 kips

Material Properties

Concrete Strength, f' _c =	4000 psi
Yield Strength of Reinforcement, f _y =	60000 psi
Strength Reduction Factor (According to Cl.9.3.2 of ACl318), Φ =	0.75
Modification Factor for Lightweight Concrete, λ =	1.00
Friction Factor (According to Cl.11.6.4.3 of ACI318), μ = 1.4* λ	= 1.40

Check Deep Beam Requirments

Check on Height of Deep Beam Requirements (According to CI.11.7.1 of ACI318),

ACI 318

Page: 2

R = IF(12*Ln/h<4; "Deep Beam Design"; "Normal Beam Design") = Deep Beam Design

Estimation of Truss Model

Length of Diagonal Strut, L1=
$$\sqrt{\left(\frac{L_n * 12}{2}\right)^2 + (h-2*x)^2} = 94.17 \text{ in}$$

The Force in Diagonal Strut, Fs=
$$\frac{P_u}{2} * \frac{L1}{h-2*x} = 602.69 \text{ kips}$$

The Force in Horizontal Tie, Ft=
$$\frac{P_u}{2} * \frac{0.5*L_n*12}{h-2*x} = 510.72 \text{ kips}$$

Angle Between Diagonal Strut and Horizontal Tie,
$$\alpha$$
= atan $\left(\frac{h-2*x}{0.5*L_n*12}\right)$ = 32.07 °

Check Validity (According to Cl.A.2.5 of ACl318)= $IF(\alpha > 25; \text{"Valid"}; \text{"Invalid"})$ = Valid

Calculation of Effective Concrete Strength

(According to Cl.3.2.2(a) of ACl318) Factor of,
$$\beta_s$$
= 0.75

Effective Concrete Strength (According to Eq.A-3 of ACI 318),

$$f_{ce1} = 0.85 * \beta_s * f'_c = 2550 \text{ psi}$$

Calculation of Effective Concrete Strength for Nodal Zones

For Nodal Zone C Bounded by Three Struts (C-C-C Nodal Zone)

(According to Cl.A.5.2.1 of ACI318) Factor of,
$$\beta_n$$
= 1.00

Effective Concrete Strength (According to Eq.A-3 of ACI 318),

$$f_{ce2} = 0.85 * \beta_n * f'_c = 3400 \text{ psi}$$

For Nodal Zone A&B Bounded by Three Struts (C-C-T Nodal Zone)

(According to Cl.A.5.2.2 of ACI318) Factor of,
$$\beta_n$$
= 0.80

Effective Concrete Strength (According to Eq.A-3 of ACI 318),

$$f_{ce3} = 0.85 * \beta_n * f'_c = 2720 \text{ psi}$$

Minimum Effective Concrete Strength,
$$f_{ce}$$
 = MIN(f_{ce1} ; f_{ce2} ; f_{ce3} ;) = 2550 psi

Check Strength at Node C

The Length of The Horizontal Face of Nodal Zone C,

Lhc=
$$\frac{P_u * 1000}{\Phi * b_c * f_{ce}}$$
 = 16.73 in

The Length of Other Faces of Nodal Zone C,

$$Lc = Lhc * \frac{Fs}{P_{..}} = 15.75 \text{ in}$$

Check Strength at Node A&B

The Length of The Horizontal Face of Nodal Zone A,

Lha=
$$\frac{\text{Ft}*1000}{\Phi^*b_c^*f_{ce}}$$
 = 13.35 in

Deep Flexural Member by the Strut-and-Tie Model

Page: 3

11.00 in

Width of Node at Support A,

La=
$$\frac{0.5^* P_u^* 1000}{\Phi^* b_c^* f_{ce}} = 8.37 \text{ in}$$

Calculation VL. and HZ. Reinforcement to Resist Splitting Diagonal Struts

1. Vertical Reinforcement

Provided Reinforcement, Bar= SEL("ACI/Bar"; Bar;) = No.4 Provided Reinforcement, A_{sbv} = TAB("ACI/Bar"; Asb; Bar=Bar) = 0.20 in² Number of Bars, n_v = 4 Vertical Reinforcement, A_{sv} = $A_{sbv} * n_v$ = 0.80 in²

Vertical Reinforcement (According to Eq.A4 of ACI318),

VL=
$$\frac{A_{sv}}{b_c * s} * \sin(90 - \alpha)$$
 = 0.00308

2. Horizontal Reinforcement

Provided Spacing between Bars, s=

Provided Reinforcement, Bar= SEL("ACI/Bar"; Bar;) = No.5 Provided Reinforcement, A_{sbh}= TAB("ACI/Bar"; Asb; Bar=Bar) = 0.31 in² Number of Bars, n_h= 2 Vertical Reinforcement, A_{sh}= $A_{sbh} * n_h$ = 0.62 in² Provided Spacing between Bars, s= 11.00 in

Horizontal Reinforcement (According to Eq.A4 of ACI318),

HZ=
$$\frac{A_{sh}}{b_c * s} * sin(\alpha) = 0.00150$$
Check Validity=
$$IF(VL+HZ>0.003; "Valid"; "Invalid") = Valid$$

Calculation of Tension Reinforcement for Tie Connecting Node A&B

Required Reinforcement Area, A _{sreq} =	$\frac{Ft^*1000}{\Phi^*fy}$	=	11.35 in ²
Provided Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.8
Provided Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	$0.79 in^2$
Number of Bars, n=			16
Total Provided Area, A _{sprov} =	n*A _{sb}	=	12.64 in ²
Check Validity=	IF(Asprov>Asreq; "Valid"; "Invalid")	=	Valid

Design Summary

Provided Vertical Reinforcement,
$$A_{sv}$$
 = A_{sv} = 0.80 in²
Provided Horizontal Reinforcement, A_{sh} = A_{sh} = 0.62 in²
Provided Tension Reinforcement, A_{sprov} = A_{sprov} = 12.64 in²